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Abstract

The Expected Shortfall (ES) is one of the most important regulatory risk measures in fi-

nance, insurance, and statistics, which has recently been characterized via sets of axioms from

perspectives of portfolio risk management and statistics. Meanwhile, there is large literature on

insurance design with ES as an objective or a constraint. A visible gap is to justify the special

role of ES in insurance and actuarial science. To fill this gap, we study the characterization of

risk measures induced by efficient insurance contracts, i.e., those that are Pareto optimal for the

insured and the insurer. One of our major results is that we characterize a mixture of the mean

and ES as the risk measure of the insured and the insurer, when contracts with deductibles are

efficient. Characterization results of other risk measures, including the mean and distortion risk

measures, are also presented by linking them to different sets of contracts.

Keywords: optimal insurance, Expected Shortfall, Pareto optimality, deductible, concen-

tration

1 Introduction

Optimal insurance and reinsurance design problems have been a prevalent topic for both re-

searchers and practitioners in insurance for decades, since the seminal work of Arrow (1963) showing

that deductible insurance is optimal for a risk-averse insured when the insurer is risk neutral. As

natural extensions, Raviv (1979) studied conditions for optimality of deductible insurances when

the insured and the insurer are both risk averse. Schlesinger (1981) examined the optimal choice

of a risk-averse insured given that the insurance is of deductible type.

Previous studies on optimal (re)insurance design problems have shown considerations from sev-

eral different perspectives. The majority of the studies focus on optimization under specific classes of

optimization criteria quantifying the risk of decision makers; see e.g., Gollier and Schlesinger (1996)
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and Schlesinger (1997) for criteria preserving second-order stochastic dominance; Cai and Tan

(2007), Cai et al. (2008) and Bernard and Tian (2009) for Value-at-Risk (VaR) and the Expected

Shortfall (ES, also called CTE or TVaR in the above literature); Cui et al. (2013) for distortion risk

measures or dual utilities (Yaari, 1987); and Braun and Muermann (2004) for regret-theoretical

expected utilities. For more recent developments on optimal insurance with risk measures, we

refer to Cai and Chi (2020) and the references therein. Moreover, optimal (re)insurance contract

design problems are studied under a variety of constraints and formulations. We refer to studies

on efficient insurance contracts with background risk (e.g., Gollier (1996) and Dana and Scarsini

(2007)) and limited liability (e.g., Cummins and Mahul (2004) and Hofmann et al. (2019)). More

recently, Lo et al. (2021) analyzed the set of universally marketable indemnities with risk measures

preserving convex orders.

Most of the previous literature aims to derive optimal forms of ceded loss functions under

various scenarios and constraints. To the best of our knowledge, there is no relevant research

on (re)insurance contract design problems focusing on identifying risk measures adopted by the

insured and the insurer. Therefore, we study optimal insurance contract design problems through

a distinctive perspective if compared to previous literature. Namely, the main goal of the present

paper is to answer the following (converse) question: In order for efficient contracts to be some sets

of contracts commonly seen in insurance practice (e.g., of deductible form), which risk measures

should the insurer and the insured use as their objectives? Specifically, we characterize different

classes of risk measures adopted by the insured and the insurer given different sets of ceded loss

functions that are Pareto optimal.

The risk measure ES has been widely applied in the contexts of financial regulation, risk manage-

ment, and insurance. In particular, ES is the standard measure for market risk in the Fundamental

Review of the Trading Book (FRTB) of BCBS (2016, 2019). In the insurance regulation framework

of Solvency II, the risk measure Value-at-Risk (VaR) is the dominating risk measure. There is a

growing academic literature on various problems using ES in actuarial science (where ES is often

called TVaR). Most of these studies motivate the use of ES as a coherent risk measure (Artzner

et al., 1999) and its advantages over VaR. Recently, Wang and Zitikis (2021) proposed the axiom

called “no reward for concentration” (NRC) which, together with a few other standard axioms,

characterizes ES.1 The main objective of Wang and Zitikis (2021) is to separate ES from other co-

herent risk measures via the axiom of NRC, thus answering the question of why one uses ES instead

of other risk measures from an axiomatic point of view. The interpretation and implication of the

NRC axiom in financial regulation have been extensively discussed in Wang and Zitikis (2021) in

the context of FRTB; see also an alternative formulation for axiomatizing ES in Han et al. (2021).

1The NRC axiom for a risk measure ρ means that the exists a regulatory stress event A such that ρ(X + Y ) =
ρ(X)+ρ(Y ) whenever X and Y both have the tail event A, meaning that X satisfies X(ω) ≥ X(ω′) for almost surely
all ω ∈ A and ω′ ∈ Ac, and so does Y .
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Given the big volume of research with ES in actuarial science, it is of great interest to understand

whether ES plays a special role in insurance. The NRC axiom of Wang and Zitikis (2021) does not

apply in the insurance context since it is interpreted as a requirement of portfolio risk assessment.

To understand the special role of ES in insurance, new insights that are specific to insurance design

are therefore needed.

We work mainly within the framework of convex risk measures of Föllmer and Schied (2002),

which is a flexible and popular class of risk measures in risk management. As the main contribution

of this paper, we show that the set of efficient ceded loss functions of deductible form corresponds to

the family of mixtures of ES and the mean (Theorem 4.2). If we further impose lower semicontinuity

as in Wang and Zitikis (2021), then we arrive at the family of ES (Lemma A.3). Our work also

extends Embrechts et al. (2021), who characterized the mixture of the mean and ES, called an ES/E-

mixture, as the only coherent Bayes risk measure from the perspective of statistical inference. In

addition, if the set of efficient ceded loss functions is the set of all slowly growing (1-Lipschitz)

functions, then the corresponding risk measures are precisely the convex distortion risk measures

(Theorem 4.1). Mathematically, our results are based on connecting various risk measures with

different additivity forms over the ceded losses and the retained losses.

For illustrative purposes, we take the perspective of an insurance design problem between an

insurer and an insured. Our technical results can certainly be applied in the reinsurance setting as

well, where risk measures are often encountered.

The rest of the paper is organized as follows. Section 2 contains some preliminaries on insurance

losses and risk measures. Section 3 sets up the formulation of the insurance contract design problem

and states economic assumptions. Section 4 contains our main characterization results of the risk

measures used by the insured and the insurer given different Pareto-optimal sets of ceded loss

functions. The results make natural connections between some common sets of ceded loss functions

and common classes of risk measures in insurance practice. We also discuss economic implications

of these results on the design of insurance menus by the insurer. Appendix A contains proofs of

the main results accompanied with relevant technical lemmas.

2 Preliminaries on risk measures

We consider a probability space (Ω,F ,P). Let X be the set of all bounded random variables,

and let X+ be the set of all non-negative random variables in X representing insurable losses.

Let I be a class of non-negative functions on [0,∞) which represent possible insurance ceded loss

functions. For an insurable loss random variable X ∈ X+ and a contract f ∈ I, f(X) represents

the payment to the insured, and X − f(X) represents the retained loss of the insured. Losses

are usually quantified by risk measures which are mappings from X to the set of real numbers,
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representing riskiness. Below we recall some properties of risk measures ρ, which are commonly

encountered in the risk management literature.

Law invariance: ρ(X) = ρ(Y ) for all X,Y ∈ X such that X
d
= Y .2

Monotonicity : ρ(X) ≥ ρ(Y ) for all X,Y ∈ X such that X ≥ Y .

Translation invariance: ρ(X + d) = ρ(X) + d for all X ∈ X and d ∈ R.

Convexity : ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for all X,Y ∈ X and λ ∈ [0, 1].

Positive homogeneity : ρ(λX) = λρ(X) for all X ∈ X and λ ≥ 0.

Following Artzner et al. (1999) and Föllmer and Schied (2016), ρ is a monetary risk measure if it is

monotone and translation invariant; a monetary risk measure ρ is called a convex risk measure if it

satisfies convexity, and it is coherent if it is also positively homogeneous.3 For X ∈ X , a distortion

risk measure is defined as

ρ(X) =

∫ ∞
0

h(P(X > x)) dx+

∫ 0

−∞
(h(P(X > x))− 1) dx,

where h : [0, 1] → [0, 1] is an increasing function with h(0) = 0 and h(1) = 1, and h is called the

distortion function of ρ. Distortion risk measures are always monetary, positively homogeneous,

and law invariant, and they are coherent if and only if their distortion functions are concave; see e.g.,

Yaari (1987) and Wang et al. (1997). For the application of distortion risk measures to insurance

premium principle calculation, see Wang et al. (1997). For X ∈ X and p ∈ (0, 1), the Value-at-Risk

(VaR) is the left-quantile given by

VaRp(X) = F−1X (p) = inf{x ∈ R : P(X ≤ x) ≥ p}.

For X ∈ X and p ∈ [0, 1), the Expected Shortfall (ES) is defined as

ESp(X) =
1

1− p

∫ 1

p
VaRt(X) dt.

It is well known that ESp is a convex risk measure while VaRp is not. Similarly, for X ∈ X and

p ∈ (0, 1], the left-ES risk measure (see e.g., Embrechts et al. (2015)) is defined by

ES−p (X) =
1

p

∫ p

0
VaRt(X) dt.

2We write X
d
= Y when two random variables X and Y follow the same distribution.

3Artzner et al. (1999) defined coherent risk measures via subadditivity instead of convexity. A risk measure ρ is
subadditive if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y ∈ X . Subadditivity and convexity are equivalent when positive
homogeneity holds.
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Throughout the paper, we write x∧y = min{x, y}, x∨y = max{x, y}, x+ = x∨0 and x− = (−x)∨0.

For an event A ∈ F , its complement is denoted by Ac.

3 Optimal insurance contract design

In this section, we explain the optimal insurance design problem. For the economic setting, we

make the following assumptions:

(A) The insured and the insurer may hold different attitudes towards risk. The insured adopts the

risk measure ρ : X → R while the insurer uses the risk measure ψ : X → R. The insured and

the insurer do not observe the risk measure of their counterparty.

(B) The premium functional is specified as π : I → R, which usually does not take negative values.

For insurance loss X ∈ X+, note that X − f(X) +π(f) is the total risk (i.e., total loss random

variable) of the insured, and f(X)− π(f) is the total risk of the insurer. Thus, the risk values

of the insurance loss to the insured and the insurer are ρ(X−f(X)+π(f)) and ψ(f(X)−π(f)),

respectively.

(C) The insured and the insurer agree on an insurance contract f ∈ I that is Pareto optimal

defined next.

Definition 3.1. For X ∈ X+, π : I → R, and ρ, ψ : X → R, an insurance contract f ∈ I is called

Pareto optimal if there is no g ∈ I, such that

ρ(X − f(X) + π(f)) ≥ ρ(X − g(X) + π(g))

and

ψ(f(X)− π(f)) ≥ ψ(g(X)− π(g)),

with at least one of the two inequalities strict. Pareto optimality is also known as (Pareto) efficiency.

A Pareto optimization problem is closely related to the minimization of a convex combination

of the objective functionals of all parties, which can be seen in, e.g., Gerber (1974), Barrieu and

Scandolo (2008), Cai et al. (2017) and Embrechts et al. (2018). For X ∈ X+, π : I → R, and

ρ, ψ : X → R, we define the set of minimizers of the sum of the two objectives for the insured and

the insurer as

IXρ,ψ = arg min
g∈I

{ρ(X − g(X) + π(g)) + ψ(g(X)− π(g))}.
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If we further assume that ρ and ψ are translation invariant, then we have

IXρ,ψ = arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))}. (3.1)

In this case, the set IXρ,ψ is independent of the choice of the premium functional π. Below we give

a characterization of the Pareto-optimal problem in our context as the minimization of the total

insurance value of the insured and the insurer.

Proposition 3.1. For two translation-invariant risk measures ρ, ψ : X → R and X ∈ X+, the

following are equivalent:

(i) an insurance contract f ∈ I is Pareto optimal for all π : I → R+;

(ii) an insurance contract f ∈ I is Pareto optimal for π : h 7→ ψ(h(X));4

(iii) f ∈ IXρ,ψ.

Proofs of all results in this paper are in Appendix A.

In a similar spirit to Proposition 3.1, a characterization of Pareto optimality in the context of

risk sharing problems can be found in Embrechts et al. (2018). Proposition 3.1 ensures that if the

objectives ρ and ψ for the two parties are translation invariant, then by (3.1), a Pareto-optimal

insurance contract can typically be obtained by solving the following minimization problem:

min
g∈I
{ρ(X − g(X)) + ψ(g(X))} . (3.2)

A minimizer of (3.2) may not be unique in many situations. Hence, the set IXρ,ψ of efficient

ceded loss functions is not a singleton in general. In the literature on optimal insurance design

problems, there are many common sets of ceded loss functions. Some notable refinements include:

1. The set I0 of all non-negative functions f on [0,∞) satisfying f(x) ≤ x for x ≥ 0. This

property means that the payment cannot exceed the total loss incurred, and it is a common

feature of almost all insurance contracts in practice. In particular, f(0) = 0, and thus there

is no insurance payment if there is no loss incurred.

2. The set I1 of all increasing functions in I0. This property means that larger incurred losses

lead to higher payments to the insured.

3. The set I2 = {f ∈ I1 : f(y) − f(x) ≤ y − x for all y ≥ x ≥ 0}, which is the set of all

slowly growing increasing functions in I1. The slowly growing property is commonly assumed

4This means φ(h) = ψ(h(X)) for all h ∈ I.
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to avoid the problem of ex-post moral hazard (Huberman et al. (1983)) via the concept of

comonotonicity; see Proposition 4.1 below.

4. The set Id1 = {f ∈ I1 : f(x) ≤ (x − d)+ for all x ≥ 0}. Ceded loss functions within this set

does not exceed the direct deductible form. Note that

Id1 = {f ∈ I1 : f(d) = 0, x− f(x) ≥ d for all x > d}.

Thus this class includes contract functions with deductible d ≥ 0. Also, we require that the

retained loss of the insured should be at least at the deductible level d, given that the random

loss exceeds the deductible level. In particular, we have I01 = I1.

Among the above sets, we have

I2 ⊂ I1 ⊂ I0 and Id1 ⊂ I1 ⊂ I0.

Throughout, ⊂ represents non-strict set inclusion. Contracts of deductible forms within the set Id1
are commonly seen in the insurance market. We next give some examples.

Example 3.1 (Deductible insurance with coinsurance). Consider the following ceded loss function:

f(x) = α(x− d)+, x ≥ 0,

which presents an insurance contract with deductible d ≥ 0 and coinsurance parameter α ∈ [0, 1].

We have f ∈ Id1 since f is bounded from above by (x− d)+. See Figure 3.1 (left-hand panel).

Example 3.2 (Deductible insurance with policy limit). The following ceded loss function

f(x) = (x− d)+ ∧ u, x ≥ 0,

is also in the set Id1 . It represents an insurance contract truncated at deductible d ≥ 0 and censored

at the policy upper limit u ≥ 0. The function is plotted in Figure 3.1 (right-hand panel).

We focus on the above three subsets due to their prominence in real-world insurance contracts.

Other subsets of I1, such as classes of convex functions, piece-wise linear functions, or functions

with the Vajda condition, have also been studied in the literature, but they correspond to different

practical considerations; see e.g., Vajda (1962), Cai et al. (2008), Chi and Weng (2013) and Chen

(2021).
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Figure 3.1: Solid lines represent the ceded loss functions of deductible insurance with coinsur-
ance (left-hand panel) and deductible insurance with policy limit (right-hand panel); dashed lines
represent ceded loss function with direct deductible

4 Risk measures implied by Pareto-optimal contracts

4.1 Main characterization results

In this section, we characterize measures ρ and ψ for the insured and the insurer in the optimal

insurance design problem with different Pareto-optimal sets of ceded loss functions.

We first collect some dependence concepts that will be helpful to distinguish different properties

of risk measures in our main results. A random vector (X,Y ) ∈ X 2 is said to be comonotonic if

(X(ω) −X(ω′))(Y (ω) − Y (ω′)) ≥ 0 for almost every ω, ω′ ∈ Ω; see also Wang and Zitikis (2020).

A risk measure ρ : X → R is said to be comonotonic-additive if ρ(X + Y ) = ρ(X) + ρ(Y ) for

all comonotonic (X,Y ) ∈ X 2. Following similar definitions as those of Wang and Zitikis (2021),

for an event A ∈ F with 0 < P(A) < 1, we call A a tail event of a random variable X ∈ X if

X(ω) ≥ X(ω′) for almost surely all ω ∈ A and ω′ ∈ Ac. A tail event A is called a p-tail event if

P(A) = 1 − p. We say that a random vector (X1, . . . , Xn) ∈ X n is p-concentrated if there exists a

common p-tail event of X1, . . . , Xn. For fixed d ≥ 0 and p ∈ [0, 1], define the sets

X dp = {X ∈ X+ : p = P(X ≤ d)}

and

Xp = {X ∈ X : p = P(X ≤ d) for some d ≥ 0} ⊃
⋃
d≥0
X dp .

We note that Xp ⊃ X dp and Xp contains random variables that may take negative values and may

be discrete. The following proposition connects the dependence structure of (f(X), X−f(X)) with
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the function f ∈ I1.

Proposition 4.1. The following statements hold.

(i) (f(X), X − f(X)) is comonotonic for all f ∈ I2 and X ∈ X+.

(ii) For fixed d > 0 and p ∈ [0, 1), (f(X), X−f(X)) is p-concentrated for all f ∈ Id1 and X ∈ X dp .

Following the terminology in Embrechts et al. (2021), for λ ∈ R and p ∈ (0, 1), we say that the

linear combination

ESλp(X) = λESp(X) + (1− λ)E[X], X ∈ X

of the mean and ESp is an ES/E-mixture. Note that we allow λ < 0 in the definition of ESλp , so the

ES/E-mixture is not necessarily a monotone risk measure. Define the sets

Iρ,ψ =
⋂

X∈X+

IXρ,ψ and Ip,dρ,ψ =
⋂

X∈X d
p

IXρ,ψ,

which are the intersections of all Pareto optimal contract sets with respect to all models of random

losses in X+ and X dp , respectively. Different choices of Iρ,ψ pin down different forms of ρ and ψ, as

we will show below. Obviously, we shall arrive at a narrower class of risk measures as the set of

efficient contracts enlarges.

Theorem 4.1. Suppose that ρ and ψ are law-invariant convex risk measures. Then:

(i) Iρ,ψ = I2 if and only if ρ = ψ and ρ is a convex distortion risk measure on X ;

(ii) Iρ,ψ = I0 if and only if ρ = ψ = E on X .

Our next result, Theorem 4.2, establishes a relationship between deductible contracts and ES,

and it is the most sophisticated result of the present paper. The proofs of Theorems 4.1 and 4.2 are

technical and rely on additional lemmas, which are presented in Appendix A together with proofs

of the theorems.

Theorem 4.2. Suppose that ρ and ψ are law-invariant convex risk measures with ρ(0) = ψ(0) = 0.

For any fixed d ≥ 0 and p ∈ [0, 1), we have Ip,dρ,ψ ⊃ I
d
1 if and only if ρ = ψ = ESλp on Xp for some

λ ≥ 0.

We note that, given that the ceded loss functions in the set Id1 are Pareto optimal for all

insurance losses in the set X dp , in Theorem 4.2 we can identify the risk measure adopted by the

insured and the insurer as an ES/E-mixture on a larger space of random losses Xp, which does

not depend on the deductible level d. In particular, the set Xp includes all random variables with

continuous distributions on bounded supports.
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Sets of ceded loss functions Classes of risk measures

all 1-Lipschitz ceded loss functions ⇐⇒ distortion risk measures

all non-negative ceded loss functions ⇐⇒ the mean

ceded loss functions with deductible form ⇐⇒ an ES/E-mixture

Table 4.1: Connections between sets of ceded loss functions and classes of risk measures

Theorems 4.1 and 4.2 reveal profound connections between common sets of ceded loss functions

and common classes of risk measures, as shown in Table 4.1.

As one of the most important economic interpretations of the above results, we show that if the

set of Pareto-optimal contracts between the insured and the insurer contains the set Id1 , then the

risk measures of the two parties have to be an ES/E-mixture. Furthermore, if the ES/E-mixture

in Theorem 4.2 satisfies lower semicontinuity with respect to almost sure convergence, then it has

to be an ES; see Lemma A.3.

If we remove some conditions from the convex risk measures ρ in Theorems 4.1 and 4.2, then

we arrive at larger classes of risk measures. For instance, without monotonicity in statement (i) of

Theorem 4.1, we expect to arrive at the distortion riskmetrics of Wang et al. (2020a).

4.2 Designing insurance menus

In this section, we discuss economic implications of our characterization results of risk measures.

We assume that the risk measures ρ and ψ for the insured and the insurer are coherent throughout

this section.

Apart from the link between the common sets of ceded loss functions and the popular classes of

risk measures, it is also interesting that all the three sets of Pareto-optimal contracts in Theorems

4.1 and 4.2 lead to the fact that the two risk measures ρ and ψ of the insured and the insurer are

the same. In fact, when the risk measures ρ and ψ are coherent, a set of Pareto-optimal contracts

with identical risk measures of the two parties is large enough to include all efficient contracts

where the insurer is more optimistic than the insured, which can be seen from the next proposition.

In this sense, the Pareto-optimal set that we obtain with identical risk measures is the union of

Pareto-optimal sets with general risk measures ρ ≥ ψ.

Proposition 4.2. We have IXρ,ψ ⊂ IXψ,ψ for all X ∈ X+ and all coherent risk measures ρ and ψ

such that ρ ≥ ψ.

The relation ρ ≥ ψ in Proposition 4.2 indicates that the insured is more pessimistic, or more

risk averse, than the insurer in the sense of Pratt (1964). Indeed, the certainty equivalent of any

random loss X under the preference described by the coherent risk measure ρ is the risk measure
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ρ(X) itself. Therefore, we compare risk aversion of the insured and the insurer through a direct

comparison of magnitudes between coherent risk measures ρ and ψ.

In practice, the insurer with the risk measure ψ does not know the risk measure ρ of the insured.

Thus it is necessary for the insurer to provide a menu of contracts that is large enough to include

all possible efficient contracts that might be chosen by the insured who is more pessimistic than

the insurer. Specifically, we consider the following process for the design of insurance menus.

1. An insurer adopts the coherent risk measure ψ as her own risk attitude.

2. The insurer does not have exact information about the risk attitudes of her customers. In

other words, the insurer does not know the coherent risk measure ρ held by any insured.

However, in order to achieve the deal, the insured should be more pessimistic than the insurer

(i.e. ρ ≥ ψ).

3. Due to incomplete information, the insurer provides a menu of contracts IXψ,ψ =
⋃
ρ≥ψ IXρ,ψ

for a random loss X ∈ X+. The set IXψ,ψ is large enough so that Pareto optimality can be

obtained for any insured that is more pessimistic than the insurer. The deal can be achieved

as long as we have ρ ≥ ψ since both parties benefit from the final deal.

4. If the insurer aims to design a “universal” menu of contracts so that Pareto optimality can

be achieved for a bundle of random losses, the menu is then obtained by taking intersections

of IXψ,ψ with respect to a set of random losses. In this case, the insurer must choose specific

classes of risk measures ψ, provided that the “universal” menu of contracts contains some

common sets of contracts in the insurance market. Specifically, Table 4.2 illustrates our

characterization results.

Pareto-optimal menu Insurer’s risk measure ψ

Iψ,ψ = I2 ⇐⇒ ψ is a distortion risk measure

Iψ,ψ = I0 ⇐⇒ ψ = E

Ip,dψ,ψ ⊃ I
d
1 ⇐⇒ ψ = ESλp

Table 4.2: Connections between Pareto-optimal sets of contracts and the insurer’s risk measures

5 Concluding remarks

In this paper, the optimal insurance design problem is considered in the sense of Pareto opti-

mality. Unlike existing studies, we solved a characterization problem of the risk measures of the

insured and the insurer given the form of the Pareto-optimal contracts, and thus this paper is in an

opposite direction to the vast majority of the literature on optimal insurance. As our main finding,
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we are able to link the ES family, the most popular convex risk measures, to the set of ceded loss

functions with a deductible form, commonly seen in insurance practice. It is not our intention to

assert that ES dominates other convex risk measures in the insurance market, since there are so

many other factors that need to be taken into account. Nevertheless, given the large volume of

research based on ES in insurance and actuarial science, we hope that the present paper brings in

additional insights on why ES is a natural risk measure to use by the insurer when evaluating risks

in the insurance market.

We note that our characterization results can be extended to the multi-player case with multiple

insurers. This naturally links our study to the characterization of risk measures in risk sharing

problems. Another potential application that can be further developed through our characterization

results is that insurance companies may wish to evaluate risk attitudes of their customers based on

contracts chosen from provided menus. This research direction requires more experimental studies

as well as theoretical justifications. As yet another future direction, viewing the insured and the

insurer as two economic agents in a competitive game, characterization problems may be explored

via game theoretic approaches.
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A Proofs of main results and related technical lemmas

In this appendix, we present proofs of our main results as well as several related lemmas.

A.1 Technical lemmas

We first collect technical lemmas that are related to, or are needed for proving, Theorems

4.1 and 4.2. We note in this regard that some parts of the proofs of the main results needed

characterizations without assuming translation invariance. Hence, our next lemma characterizes

risk measures ρ and ψ without this assumption and is restricted to the space X 0
0 . The lemma was

used in the proof of Theorem 4.2.

Lemma A.1. Suppose that risk measures ρ and ψ are law invariant, monotone, convex and uni-

formly continuous with respect to L∞-norm. Then we have the following two characterization
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results.

(i) The inclusion ⋂
X∈X 0

0

arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))} ⊃ I2

holds if and only if

ρ(X) = ψ(X) =

∫ ∞
0

h(P(X ≥ x)) dx (A.1)

for all X ∈ X 0
0 , where h : [0, 1]→ [0,∞) is an increasing concave function with h(0) = 0.5

(ii) The inclusion ⋂
X∈X 0

0

arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))} ⊃ I1

holds if and only if ρ = ψ = λE on X 0
0 for some λ ≥ 0.

Proof. (i) For convenience of the proof for Theorem 4.1, we prove the result on space X+, and the

proof of (i) holds by directly changing X+ to X 0
0 .

“⇒”: Suppose that Iρ,ψ ⊃ I2. Let h0(x) = 0 and h1(x) = x, x ≥ 0, the constant zero function

and the identity, respectively. Since h0, h1 ∈ I2, we have

ρ(X) = ψ(X) = min
g∈I
{ρ(X − g(X)) + ψ(g(X))} , X ∈ X+.

Hence ρ = ψ on X+ and ρ(X − f(X)) + ρ(f(X)) = ρ(X) for all f ∈ I2 and X ∈ X+.

By Proposition 4.5 of Denneberg (1994), for any comonotonic (Y,Z) ∈ X 2
+ with Y + Z = X,

there exists f ∈ I2 such that Y = f(X) and Z = X − f(X). Since X is arbitrary, we therefore

have the equation ρ(Y ) + ρ(Z) = ρ(Y + Z) for all comonotonic (Y, Z) ∈ X 2
+. This shows that ρ is

comonotonic-additive on X+. Thus (A.1) holds by Theorems 1 and 3 of Wang et al. (2020b).

“⇐”: Suppose that ρ and ψ satisfy (A.1) on X+. For all f ∈ I2 and X ∈ X+, we have by

Proposition 4.1 that (f(X), X − f(X)) is comonotonic. By comonotonic-additivity of ρ, we have

ρ(X − f(X)) + ρ(f(X)) = ρ(X). Furthermore, due to subadditivity of ρ, we have f ∈ Iρ,ρ. It

follows that I2 ⊂ Iρ,ρ.
(ii) The “if” part is straightforward by linearity of the mean. We prove the “only if” part. Since

I1 ⊃ I2, by (i), we have ρ(X) = ψ(X) =
∫∞
0 h(P(X ≥ x)) dx for all X ∈ X 0

0 . By Theorem 5 of

Wang et al. (2020a), there is a finite Borel measure µ on [0, 1] such that ρ(X) =
∫ 1
0 ESα(X)µ(dα)

for X ∈ X 0
0 . For all 0 < α ≤ 1, there exists differentiable f ∈ I1 such that f ′(x) ≤ 1 for all

x ∈ [0,VaRα(X)) and f ′(x) > 1 for all x ∈ [VaRα(X),∞). Thus x 7→ x − f(x) is increasing

5Functionals of form (A.1) belong to the family of distortion riskmetrics of Wang et al. (2020a) with increasing
distortion functions.
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on [0,VaRα(X)) and decreasing on [VaRα(X),∞) in strict sense. According to Lemma A.3 and

Lemma A.7 of Wang and Zitikis (2021), we have a p-tail event A of X and f(X) with

{X > VaRα(X)} ⊂ A ⊂ {X ≥ VaRα(X)}

such that

ESα(X) = E[X|A] and ESα(f(X)) = E[f(X)|A].

On the other hand, for a p-tail event B of X − f(X) satisfying

{X − f(X) > VaRα(X − f(X))} ⊂ B ⊂ {X − f(X) ≥ VaRα(X − f(X))},

we have

ESα(X − f(X)) = E[X − f(X)|B] > E[X − f(X)|A].

Thus we have

ESα(f(X)) + ESα(X − f(X)) > E[f(X)|A] + E[X − f(X)|A] = E[X|A] = ESα(X)

and so

ρ(f(X)) + ρ(X − f(X)) =

∫ 1

0
ESα(f(X)) + ESα(X − f(X))µ(dα)

>

∫ 1

0
ESα(X)µ(dα) = ρ(X),

which leads to a contradiction. Hence, µ((0, 1]) = 0 and ρ(X) = ψ(X) = λE[X] for some λ ≥ 0

and for all X ∈ X 0
0 .

The next lemma characterizes an ES/E-mixture. The lemma implies that a law-invariant convex

risk measure dominated by an ES/E-mixture must be the ES/E-mixture itself provided that it

coincides with the ES/E-mixture somewhere. We used the lemma when proving Theorem 4.2.

Lemma A.2. Let ρ : X → R be a law-invariant convex risk measure. Fix d ≥ 0 and p ∈ (0, 1).

We have ρ(X) = ρ((X − d)+) + ρ(X ∧ d) and ρ(X ∨ d) = λESp(X) + (1− λ)d for all X ∈ X dp with

λ ∈ R if and only if ρ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp with λ ≥ 1− p.

Proof. The “if” part follows immediately from the definitions of ESp and ES−p . Hence, we prove

the “only if” part.

Since ρ is a law-invariant convex risk measure, for all X ∈ X dp we write

ρ(X) = sup
Z∈Q
{E[ZX] + V (Z)},
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where Q is a set of Radon-Nikodym derivatives and V is a mapping from Q to [−∞, 0] (see e.g.,

Jouini et al. (2006)). We first show that Z ≤ λ/(1 − p) for all Z ∈ Q. Assume for the sake of

contradiction that P(Z ′ > λ/(1 − p)) > 0 for some Z ′ ∈ Q. Take A ⊂ {Z ′ > λ/(1 − p)} and

Y = 1A(d + 1)γ + 1B(d + 1) for γ > 1, where P(A ∪ B) = 1 − p and A ∩ B = ∅. It is clear that

Y ∈ X dp . We have

sup
Z∈Q
{E[ZY ] + V (Z)} ≥ E[Z ′(1A(d+ 1)γ + 1B(d+ 1))] + V (Z ′)

≥ (d+ 1)γE[Z ′1A] + V (Z ′)

= E[Z ′|A]E[1A(d+ 1)γ] + V (Z ′).

On the other hand, we have

λESp(Y ) + (1− λ)d = λESp(1A(d+ 1)γ + 1B(d+ 1)) + (1− λ)d

=
λ

1− p
E[1A(d+ 1)γ + 1B(d+ 1)] + (1− λ)d.

Since E[Z ′|A] > λ/(1− p), we have

lim
γ→∞

(E[Z ′|A]E[1A(d+ 1)γ] + V (Z ′)) > lim
γ→∞

(λESp(Y ) + (1− λ)d),

which contradicts the assumption that ρ(X) ≤ λESp(X) + (1− λ)d for all X ∈ X dp . Therefore, we

have Z ≤ λ/(1− p) for all Z ∈ Q. On the other hand, since E[Z] = 1, we have λ/(1− p) ≥ 1 and

thus λ ≥ 1− p.
We next show that ρ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp . Note that {X > d} is a

common p-tail event of X and X ∨ d. We have ESp(X) = ESp(X ∨ d) and

d =
1

p
E[(X ∨ d)1{X≤d}] = ES−p (X ∨ d).

It follows that

sup
Z∈Q
{E[Z(X ∨ d)] + V (Z)} = ρ(X ∨ d)

= λESp(X) + (1− λ)d = λESp(X ∨ d) + (1− λ)ES−p (X ∨ d).

For X1, X2, . . . ∈ X dp and Xn ↓ X, since Z is non-negative and bounded from above by 1/(1 − p),
the dominated convergence theorem implies

lim
n→∞

sup
Z∈Q
{E[ZXn] + V (Z)} = sup

Z∈Q
{E[ZX] + V (Z)},
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which means that ρ is continuous from above. Hence,

ρ(X) = max
Z∈Q
{E[ZX] + V (Z)}

for all X ∈ X dp ; see e.g., Corollary 4.35 of Föllmer and Schied (2016). It follows that there exists

Z0 ∈ Q such that

E[Z0(X ∨ d)] + V (Z0) =
λ

1− p
E[(X ∨ d)1{X>d}] +

1− λ
p

E[(X ∨ d)1{X≤d}]. (A.2)

We claim that Z0 = λ1{X>d}/(1−p)+(1−λ)1{X≤d}/p. Indeed, assume for the sake of contradiction

that Z0 6= λ1{X>d}/(1− p) + (1− λ)1{X≤d}/p. Since

E[Z0] = 1 = E
[

λ

1− p
1{X>d} +

1− λ
p

1{X≤d}

]
,

we have

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
+

> 0

)
> 0

and

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
−
> 0

)
> 0.

Note that λ/(1− p) ≥ 1 ≥ (1− λ)/p. Hence,{(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
+

> 0

}
⊂ {X ≤ d}.

We also note that{(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
−
> 0

}
∩ {X > d} 6= ∅.

Otherwise, we must have Z0 = λ/(1− p) and

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
−
> 0

)
= 0,
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which leads to contradiction. These considerations imply that

E
[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
(X ∨ d)

]
= E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
+

(X ∨ d)

]
− E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
−

(X ∨ d)

]
< d

(
E
[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
+

]
− E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X≤d}

)
−

])
= 0,

which contradicts equation (A.2). Therefore, we must have Z0 = λ1{X>d}/(1−p)+(1−λ)1{X≤d}/p.

Hence, Z0 = λ1{X>d}/(1− p) + (1− λ)1{X≤d}/p ∈ Q and V (Z0) = 0. It follows that

sup
Z∈Q
{E[ZX] + V (Z)} ≥ E

[
λ

1− p
X1{X>d} +

1− λ
p

X1{X≤d}

]
= λESp(X) + (1− λ)ES−p (X).

On the other hand, we have

ρ(X) ≤ λESp(X) + (1− λ)d = γESp(X) + (1− γ)ES−p (X),

for some 1 − p ≤ λ ≤ γ ≤ 1 since ES−p (X) ≤ d ≤ ESp(X). Hence, there exists λ ≤ λ′ ≤ γ, such

that ρ(X) = λ′ESp(X) + (1− λ′)ES−p (X).

Take Xm = X1{X≤d} + (X +m)1{X>d} for m > 0. We have Xm ∈ X dp . For some λm ∈ [λ, 1],

ρ(Xm) = λmESp(Xm) + (1− λm)ES−p (Xm) = λmESp(X) + λmm+ (1− λm)ES−p (X). (A.3)

Since ρ(Xm ∨ d) = λESp(X) + λm + (1 − λ)d, this implies that there exists m > 0 such that

λm = λ. Indeed, otherwise we can take m → ∞ and have a contradiction to ρ(Xm) ≤ ρ(Xm ∨ d)

by monotonicity of ρ. On the other hand, for m such that λm = λ, we have

ρ(Xm) = ρ(Xm ∨ d)− d+ ρ(Xm ∧ d) = λESp(X) + λm− λd+ ρ(X ∧ d)

= ρ(X) + λm = λ′ESp(X) + (1− λ′)ES−p (X) + λm.
(A.4)

Equations (A.3) and (A.4), together with λm = λ, yield that λ′ = λ for all X ∈ X dp . This completes

the proof.

Finally, we give a lemma on properties of ES/E-mixtures that can precisely pin down the family

of ES within the class of ES/E-mixtures obtained in Theorem 4.2.
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Lemma A.3. For an ES/E-mixture ρ = λESp + (1− λ)E, we have the following statements:

(i) ρ is lower semicontinuous with respect to almost sure convergence if and only if λ ≥ 1;

(ii) ρ is convex if and only if λ ≥ 0;

(iii) ρ is monotone if and only if λ ∈ [1− 1/p, 1].

In particular, ρ is monotone and lower semicontinuous with respect to almost sure convergence if

and only if it is ESp.

Proof. (i) Suppose that λ < 1. Let Xk = −k1{U<1/k}, where U ∼ U[0, 1]. Clearly, Xk → 0 almost

surely as k →∞, E[Xk] = −1, and ESp(Xk) = 0 for k > 1/p. Therefore,

lim inf
k→∞

((1− λ)E[Xk] + λESp(Xk)) = −(1− λ) < 0 = ρ(0),

contradicting lower semicontinuity.

(ii) We note that ρ is a signed Choquet integral of Wang et al. (2020b) with the (not necessarily

increasing) distortion function

h(t) = λ

(
t

1− p
∧ 1

)
+ (1− λ)t, t ∈ [0, 1].

By Theorem 3 of Wang et al. (2020b), ρ is convex if and only if h is concave. It is straightforward

to verify that h is concave if and only if λ ≥ 0.

(iii) By Lemma 1 (i) of Wang et al. (2020b), ρ is monotone if and only if h is increasing. Clearly,

λ > 1 implies that h is strictly decreasing on (1− p, 1]. For λ ≤ 1, increasing monotonicity of h is

equivalent to
λ

1− p
+ 1− λ ≥ 0 ⇐⇒ λ ≥ 1− 1

p
.

Hence, ρ is monotone if and only if λ ∈ [1− 1/p, 1].

A.2 Proofs of all results

Proof of Proposition 3.1. “(i)⇒(ii)”: This is straightforward by taking π : h 7→ ψ(h(X)).

“(ii)⇒(iii)”: Suppose that f ∈ I is Pareto optimal for π : h 7→ ψ(h(X)). Assume for the sake

of contradiction that f /∈ IXρ,ψ. It follows that there exists g ∈ I, such that

ρ(X − g(X)) + ψ(g(X)) < ρ(X − f(X)) + ψ(f(X)).
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By translation invariance of ρ and ψ, we have

ρ(X − g(X) + π(g)) = ρ(X − g(X)) + ψ(g(X))

< ρ(X − f(X)) + ψ(f(X)) = ρ(X − f(X) + π(f))

and

ψ(g(X)− π(g)) = ψ(g(X)− ψ(g(X))) = 0 = ψ(f(X)− π(f)),

which leads to a contradiction to Pareto optimality of f . Therefore, f ∈ IXρ,ψ.

“(iii)⇒(i)”: Suppose that f ∈ IXρ,ψ. Assume for the sake of contradiction that f is not Pareto

optimal for some π : I → R. It follows that there exists g ∈ I such that

ρ(X − g(X) + π(g)) ≤ ρ(X − f(X) + π(f))

and

ψ(g(X)− π(g)) ≤ ψ(f(X)− π(f)),

with at least one of the above two inequalities being strict. Hence,

ρ(X − g(X) + π(g)) + ψ(g(X)− π(g)) < ρ(X − f(X) + π(f)) + ψ(f(X)− π(f)),

which contradicts the fact that f ∈ IXρ,ψ. Therefore, the function f is Pareto optimal for all

π : I → R.

Proof of Proposition 4.1. (i) Suppose that f ∈ I2. Define the function g by g(x) = x − f(x) for

x ∈ [0,∞). For all X ∈ X+, we have X − f(X) = g(X). Since f ∈ I2, the function g is increasing

and (f(X), g(X)) is comonotonic.

(ii) Suppose that f ∈ Id1 for d > 0. For all X ∈ X dp , the set {X > d} is a common tail

event of f(X) and X − f(X) by the definitions of the tail event and the set Id1 . Also note that

P(X > d) = 1− p. Therefore, (f(X), X − f(X)) is p-concentrated.

Here we present the proof of Theorem 4.2 first because it is useful for the proof of Theorem 4.1.

Proof of Theorem 4.2. “⇐”: For all f ∈ Id1 , note that (f(X), X − f(X)) is p-concentrated for

all X ∈ X dp by Proposition 4.1. By p-additivity of ESp (see Wang and Zitikis (2021)), we have

ESp(X − f(X)) + ESp(f(X)) = ESp(X) and thus f ∈ Id,pESp,ESp
. Hence Id,pESp,ESp

⊃ Id1 .

“⇒”: It suffices to show that ρ = ψ = ESλp on X dp for some λ ≥ 0, and that ρ = ψ = ESλp on Xp
holds due to translation invariance of ρ and ψ. Write hd(x) = (x − d)+, x ≥ 0, for all d ≥ 0 and
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recall that h0(x) = 0, x ≥ 0. Since h0, hd ∈ Id1 , we have

ρ(X) = ρ(X ∧ d) + ψ((X − d)+) = min
g∈I
{ρ(X − g(X)) + ψ(g(X))} (A.5)

for all X ∈ X dp .

We first prove the case when d = p = 0. We know from Lemma A.1 that ρ(X) = ψ(X) = λE[X]

for some λ ≥ 0 and for all X ∈ X 0
0 . Since ρ is translation invariant and X + c ∈ X 0

0 for all X ∈ X 0
0

and c ≥ 0, we have

λE[X] + c = ρ(X) + c = ρ(X + c) = λE[X + c] = λE[X] + λc.

It follows that λ = 1.

We now prove the case when d = 0 and p ∈ (0, 1). We known from statement (A.5) that ρ = ψ

on X0
p . For all X ∈ X 0

0 , we define φ(X) = ρ(X1A) by taking an event A independent of X with

P(A) = 1 − p (a specific choice of A does not matter since ρ is law invariant). It is clear that φ

is law invariant, monotone, convex and uniformly continuous with respect to L∞-norm. Note that

for all X ∈ X 0
0 and all events B and C independent of X with P(B) = P(C) = 1 − p, we have

X1B
d
= X1C . Hence, φ(X) = ρ(X1B) = ρ(X1C) and thus φ is well defined. Since X1A ∈ X 0

p and

I0,pρ,ψ ⊃ I1, we have

φ(f(X)) + φ(X − f(X)) = ρ(f(X)1A) + ρ((X − f(X))1A)

= ρ(f(X1A)) + ρ(X1A − f(X1A)) = ρ(X1A) = φ(X)

for all f ∈ I1 and X ∈ X 0
0 . It follows from Lemma A.1 that φ(X) = λE[X] for some λ ≥ 0 and for

all X ∈ X 0
0 . For all X ∈ X 0

p , we take any random variable Y such that Y
d
= X|X > 0. We have

Y ∈ X 0
0 and X1{X>0}

d
= Y 1A. Thus

ρ(X1{X>0}) = ρ(Y 1A) = λE[Y ] = λESp(X).

It follows that

ρ(X) = ψ(X) = ρ(X1{X>0}) + ρ(X1{X=0}) = λESp(X) (A.6)

for all X ∈ X 0
p . Note that for all X ∈ X 0

p ,

ESp(X) =
1

1− p
E[X1X>0] =

1

1− p
E[X].

Hence, we have

ρ(X) = λ′ESp(X) + (1− λ′)E[X]
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for all X ∈ X 0
p , where λ′ = (λ− 1 + p)/p. By equation (A.6) and Lemma A.2, we have λ ≥ 1− p

and thus λ′ ≥ 0.

Next, we prove the case when d > 0 and p = 0. For all X ∈ X 0
0 , we have X + d ∈ X d0 . We

obtain from Id,0ρ,ψ ⊃ I
d
1 that

ρ(X + d− f(X + d)) + ψ(f(X + d)) = ρ(X + d) (A.7)

for all f ∈ Id1 . Take those f that are of the form f(x) = g(x − d) for any g ∈ I1 and all x ≥ d.

Noting that ρ is translation invariant, we have

ρ(X − g(X)) + ψ(g(X)) = ρ(X) (A.8)

for all g ∈ I1. Hence, ρ(X) = ψ(X) = λE[X] = λES0(X) for some λ ≥ 0 and for all X ∈ X 0
0 by

Lemma A.1. Since ρ is translation invariant, we have λ = 1.

We finally prove the case when d > 0 and p ∈ (0, 1). For all X ∈ X 0
p , we have X + d ∈ X dp .

Following similar arguments as those we used to derive equations (A.7) and (A.8), we obtain

ρ(X − g(X)) + ψ(g(X)) = ρ(X)

for all g ∈ I1. Hence, ρ(X) = ψ(X) = λESp(X) for some λ ≥ 1− p and for all X ∈ X 0
p by equation

(A.6). For all X ∈ X dp , we have (X − d)+ ∈ X 0
p . Therefore,

ρ((X − d)+) = ψ((X − d)+) = λESp[(X − d)+] = λ(ESp(X)− d).

Hence, ρ(X ∨ d) = ρ((X − d)+ + d) = λESp(X) + (1 − λ)d and ψ(X ∨ d) = λESp(X) + (1 − λ)d.

By Lemma A.2, we have ρ(X) = ψ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp . Since

(1− p)ESp(X) + pES−p (X) = E[X],

we have ρ(X) = ψ(X) = γESp(X) + (1− γ)E[X], where γ = 1− (1− λ)/p ≥ 0.

Proof of Theorem 4.1. Let h0(x) = 0 and h1(x) = x, x ≥ 0, the constant zero function and the

identity, respectively.

(i) “⇒”: Suppose that Iρ,ψ = I2. By the proof of Lemma A.1 (i) and translation invariance of

ρ and ψ, we have ρ = ψ on X and ρ is comonotonic-additive on X . Moreover, we know that ρ is

uniformly continuous with respect to L∞-norm since ρ is monetary, and ρ is law invariant. Hence,

ρ is a convex distortion risk measure on X (see e.g., Kusuoka (2001)).

“⇐”: Suppose that ρ = ψ is a convex distortion risk measure on X . We will prove that
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Iρ,ρ = I2. Since ρ is a convex distortion risk measure, it is also coherent by e.g., Corollary 1 of

Wang et al. (2020a); see Acerbi (2002). Following the same logic as the proof of Lemma A.1 (i),

we have I2 ⊂ Iρ,ρ.
We next prove that Iρ,ρ ⊂ I2. For each f /∈ I2, we will show that there exists X ∈ X+ such that

ρ(X − f(X)) + ρ(f(X)) > ρ(X). Indeed, there exists 0 ≤ x < y, such that |f(y)− f(x)| > y − x.

It is clear that f(x) 6= f(y). Since ρ is a coherent distortion risk measure, there exists a Borel

measure µ on [0, 1] such that ρ =
∫ 1
0 ESt dµ(t) on X . Take X = x1A + y1Ac where P(A) = 1/2. If

f(x) < f(y), then

ESt(X) =

{
(1−2t)x+y

2−2t , 0 ≤ t ≤ 1/2,

y, 1/2 < t < 1,

ESt(f(X)) =

{
(1−2t)f(x)+f(y)

2−2t , 0 ≤ t ≤ 1/2,

f(y), 1/2 < t < 1,

ESt(X − f(X)) =

{
x−f(x)+(1−2t)(y−f(y))

2−2t , 0 ≤ t ≤ 1/2,

x− f(x), 1/2 < t < 1.

Hence,
ρ(X − f(X)) + ρ(f(X))− ρ(X)

y − x

=

∫ 1/2

0

t

1− t

(
f(y)− f(x)

y − x
− 1

)
dµ(t) +

∫ 1

1/2

f(y)− f(x)

y − x
− 1 dµ(t) > 0.

Similarly, if f(x) > f(y), then we have

ESt(X) =

{
(1−2t)x+y

2−2t , 0 ≤ t ≤ 1/2,

y, 1/2 < t < 1,

ESt(f(X)) =

{
f(x)+(1−2t)f(y)

2−2t , 0 ≤ t ≤ 1/2,

f(x), 1/2 < t < 1,

ESt(X − f(X)) =

{
(1−2t)(x−f(x))+y−f(y)

2−2t , 0 ≤ t ≤ 1/2,

y − f(y), 1/2 < t < 1,

and thus
ρ(X − f(X)) + ρ(f(X))− ρ(X)

=

∫ 1/2

0

t

1− t
(f(x)− f(y)) dµ(t) +

∫ 1

1/2
f(x)− f(y) dµ(t) > 0.

Therefore, Iρ,ρ ⊂ I2 and thus Iρ,ρ = I2.
(ii) The “if” part is straightforward by linearity of the mean. Hence, we prove the “only if”

part. Similar to (i), since h0, h1 ∈ I0, we have by translation invariance of ρ and ψ that ρ = ψ on
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X . Since I1 ⊂ I0 and X 0
0 ⊂ X+, we know from Theorem 4.2 that ρ(X) = E[X] for all X ∈ X 0

0 .

Since X ∈ X is bounded, we take c > 0 such that X + c ∈ X 0
0 . It follows that ρ(X + c) = E[X + c].

Hence, translation invariance of ρ implies ρ(X) = E[X].

Proof of Proposition 4.2. Take any X ∈ X+ and coherent risk measures ρ, ψ : X → R with ρ ≥ ψ.

For all f /∈ IXψ,ψ, we have

ρ(X − f(X)) + ψ(f(X)) ≥ ψ(X − f(X)) + ψ(f(X)) > ψ(X),

where the last inequality is due to subadditivity of ψ. With h1(x) = x, x ≥ 0, which belongs to I,

we have ρ(X − h1(X)) + ψ(h1(X)) = ψ(X) and thus

min
g∈I
{ρ(X − g(X)) + ψ(g(X))} ≤ ψ(X).

It follows that f /∈ IXρ,ψ and therefore IXρ,ψ ⊂ IXψ,ψ.
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